Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
How Generative AI Helps Predictive AI
 Originally published in Forbes, August 21, 2024 This is the...
4 Ways Machine Learning Can Perpetuate Injustice and What to Do About It
 Originally published in Built In, July 12, 2024 When ML...
The Great AI Myth: These 3 Misconceptions Fuel It
 Originally published in Forbes, July 29, 2024 The hottest thing...
Where FICO Gets Its Data for Screening Two-Thirds of All Card Transactions
 Originally published in The European Business Review, March 21,...
SHARE THIS:

5 years ago
The 5 Classification Evaluation Metrics Every Data Scientist Must Know. And when Exactly to Use Them?

 
Originally pubished in Medium, Sept 17, 2019.

What do we want to optimize for? Most of the businesses fail to answer this simple question.

Every business problem is a little different, and it should be optimized differently.

We all have created classification models. A lot of time we try to increase evaluate our models on accuracy. But do we really want accuracy as a metric of our model performance?

What if we are predicting the number of asteroids that will hit the earth.

Just say zero all the time. And you will be 99% accurate. My model can be reasonably accurate, but not at all valuable. What should we do in such cases?

Designing a Data Science project is much more important than the modeling itself.

This post is about various evaluation metrics and how and when to use them.

  1. Accuracy, Precision, and Recall:

A.  Accuracy

Accuracy is the quintessential classification metric. It is pretty easy to understand. And easily suited for binary as well as a multiclass classification problem.

Accuracy = (TP+TN)/(TP+FP+FN+TN)

Accuracy is the proportion of true results among the total number of cases examined.

To continue reading this article, click here.

Leave a Reply