Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Quant’s Dilemma: Subjectivity In Predictive AI’s Value
 Originally published in Forbes This is the third of a...
To Deploy Predictive AI, You Must Navigate These Tradeoffs
 Originally published in Forbes This is the second of a...
Data Analytics in Higher Education
 Universities confront many of the same marketing challenges as...
How Generative AI Helps Predictive AI
 Originally published in Forbes, August 21, 2024 This is the...
SHARE THIS:

10 years ago
Haystacks and Needles: Anomaly Detection

 Anomalies vs Outliers Anomaly detection, or finding needles in a haystack, is an important tool in data exploration and unsupervised analytic modeling. Anomaly detection also creates a path to supervised modeling by singling out key examples that an analyst can begin to classify as needles or hay. Those labeled examples are essential for supervised learning, which is much more powerful than unsupervised learning methods like clustering. Though anomaly and outlier are often used interchangeably we’d like to emphasize distinct definitions. As Ravi Parikh describes well in a blog post[1], “An outlier is a legitimate data point that’s far

This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.

Comments are closed.