Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Great AI Myth: These 3 Misconceptions Fuel It
 Originally published in Forbes, July 29, 2024. The hottest thing...
How to Sell a Machine Learning Project
 Originally published in Built In, February 6, 2024. Never...
The 3 Things You Need To Know About Predictive AI
 Originally published in Forbes, June 29, 2024. Some problems are...
Alphabet Uses AI To Rush First Responders To Disasters—Takeaways For Businesses
 Originally published in Forbes, July 7, 2024. The National Guard...
SHARE THIS:

6 years ago
Deep Learning Framework Power Scores 2018—Who’s On Top in Usage, Interest, and Popularity?

 

Originally published in Towards Data Science  September 19, 2018

For today’s leading deep learning methods and technology, attend the conference and training workshops at Deep Learning World, June 16-19, 2019 in Las Vegas. 

Deep learning continues to be the hottest thing in data science. Deep learning frameworks are changing rapidly. Just five years ago, none of the leaders other than Theano were even around.

I wanted to find evidence for which frameworks merit attention, so I developed this power ranking. I used 11 data sources across 7 distinct categories to gauge framework usage, interest, and popularity. Then I weighted and combined the data in this Kaggle Kernel.

UPDATE SEPT 20, 2018: Due to popular demand, I expanded the frameworks evaluated to include Caffe, Deeplearning4J, Caffe2, and Chainer. Now all deep learning frameworks with more than 1% reported usage on KDNuggets usage survey are included.

UPDATE SEPT 21, 2018: I made a number of methodological improvements in several of the metrics.

Without further ado, here are the Deep Learning Framework Power Scores:

While TensorFlow is the clear winner, there were some surprising findings. Let’s dive in!

The Contenders

All of these frameworks are open source. All except one work with Python, and some can work with R or other languages.

Continue reading this article here.

About the Author

Jeff Hale is into data science and machine learning.

Leave a Reply