Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Quant’s Dilemma: Subjectivity In Predictive AI’s Value
 Originally published in Forbes, September 30, 2024 This is the...
To Deploy Predictive AI, You Must Navigate These Tradeoffs
 Originally published in Forbes, August 27, 2024 This is the...
Data Analytics in Higher Education
 Universities confront many of the same marketing challenges as...
How Generative AI Helps Predictive AI
 Originally published in Forbes, August 21, 2024 This is the...
SHARE THIS:

2 years ago
The Science of Price Experiments in the Amazon Store

 
Originally published in Amazon Science, April 14, 2023.  

The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The prices of products in the Amazon Store reflect a range of factors, such as demand, seasonality, and general economic trends. Pricing policies typically involve formulas that take such factors into account; newer pricing policies usually rely on machine learning models.

With the Amazon Pricing Labs, we can conduct a range of online A/B experiments to evaluate new pricing policies. Because we practice nondiscriminatory pricing — all visitors to the Amazon Store at the same time see the same prices for all products — we need to apply experimental treatments to product prices over time, rather than testing different price points simultaneously on different customers. This complicates the experimental design.

In a paper we published in the Journal of Business Economics in March and presented at the American Economics Association’s annual conference in January (AEA), we described some of the experiments we can conduct to prevent spillovers, improve precision, and control for demand trends and differences in treatment groups when evaluating new pricing policies.

To continue reading this article, click here.

3 thoughts on “The Science of Price Experiments in the Amazon Store

Leave a Reply