By: Dean Abbott, Abbott Analytics and SmarterHQ, Inc.
Portions excerpted from Chapter 2 of his book Applied Predictive Analytics (Wiley 2014, http://amzn.com/1118727967)
Successful predictive modeling is more than identifying the right algorithms. And, even though 60-90% of our time is spend on data preparation before deploying the first predictive model built from a new data set, successful predictive modeling goes well beyond effective data cleaning and feature creation. I argue there, that most failed predictive modeling projects are on the path to failure before the first data set is even loaded because of these three steps that are frequently overlooked.
This content is restricted to site members. If you are an existing user, please log in on the right (desktop) or below (mobile). If not, register today and gain free access to original content and industry news. See the details here.
The Machine Learning Times © 2020 • 1221 State Street • Suite 12, 91940 •
Santa Barbara, CA 93190
Produced by: Rising Media & Prediction Impact