Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
The Rise Of Large Database Models
 Originally published in Forbes Even as large language models have...
3 Predictions For Predictive AI In 2025
 Originally published in Forbes GenAI’s complementary sibling, predictive AI, makes...
The Quant’s Dilemma: Subjectivity In Predictive AI’s Value
 Originally published in Forbes This is the third of a...
To Deploy Predictive AI, You Must Navigate These Tradeoffs
 Originally published in Forbes This is the second of a...
SHARE THIS:

7 months ago
Widespread machine learning methods behind ‘link prediction’ are performing very poorly, study shows

 

Originally published in US Santa Cruz NEWSCENTER, February 12, 2024

New research indicates that methods used to test the accuracy of link prediction are flawed, and that link prediction does not work as well as common benchmarking tests currently indicate

As you scroll through any social media feed, you are likely to be prompted to follow or friend another person, expanding your personal network and contributing to the growth of the app itself. The person suggested to you is a result of link prediction: a widespread machine learning (ML) task that evaluates the links in a network — your friends and everyone else’s — and tries to predict what the next links will be.

Beyond being the engine that drives social media expansion, link prediction is also used in a wide range of scientific research, such as predicting the interaction between genes and proteins, and is used by researchers as a benchmark for testing the performance of new ML algorithms.

New research from UC Santa Cruz Professor of Computer Science and Engineering C. “Sesh” Seshadhri published in the journal Proceedings of the National Academy of Sciences establishes that the metric used to measure link prediction performance is missing crucial information, and link prediction tasks are performing significantly worse than popular literature indicates.

To continue reading this article, click here.

Comments are closed.