Machine Learning Times
Machine Learning Times
EXCLUSIVE HIGHLIGHTS
How Generative AI Helps Predictive AI
 Originally published in Forbes, August 21, 2024 This is the...
4 Ways Machine Learning Can Perpetuate Injustice and What to Do About It
 Originally published in Built In, July 12, 2024 When ML...
The Great AI Myth: These 3 Misconceptions Fuel It
 Originally published in Forbes, July 29, 2024 The hottest thing...
Where FICO Gets Its Data for Screening Two-Thirds of All Card Transactions
 Originally published in The European Business Review, March 21,...
SHARE THIS:

3 years ago
Wise Practitioner – Predictive Analytics Interview Series: Dohyeong Kim, PhD, at University of Texas at Dallas

 

In anticipation of his upcoming presentation at Predictive Analytics World for Healthcare, Las Vegas, June 19-24, 2022, we asked Dohyeong Kim, PhD, Professor and Associate Dean of Graduation Education Public Policy at University of Texas at Dallas, a few questions about their deployment of predictive analytics. Catch a glimpse of his presentation, Ambient PM Concentrations as a Precursor of Emergency Visits for Respirator Complaints: Roles of Deep Learning and Multi-Point Real Time Monitoring, and see what’s in store at the PAW for Healthcare conference.

Q: In your work with predictive analytics, what behavior or outcome do your models predict?

A: Daily counts of emergency room visits or individual asthmatic symptoms.

Q: How does predictive analytics deliver value at your organization – what is one specific way in which it actively drives decisions or operations?

A: Our predictive analytic tools help patients take necessary action to mitigate adverse symptoms or guide policymakers to design evidence-based environmental and health interventions.

Q: Can you describe a quantitative result, such as the predictive lift of your model or the ROI of an analytics initiative?

A: The predictive accuracy of our model is as good as the RMSE of 0.79.

Q: What surprising discovery or insight have you unearthed in your data?

A: Our results reveal evidence that accuracy in predicting emergency visit counts is improved substantially when spatial variations of air pollutants from multi-point stations are incorporated in the algorithm as a 9-day time window.

Q: Sneak preview: Please tell us a take-away that you will provide during your talk at Predictive Analytics World.

A: Our study explored the feasibility of deep learning algorithms to improve the accuracy of predicting daily emergency hospital visits by tracking their spatiotemporal association with PM concentrations. Our findings suggest guidelines on how environmental and health policymakers can arrange limited resources for emergency care and design ambient air monitoring and prevention strategies.

Don’t miss Dohyeong’s presentation, Ambient PM Concentrations as a Precursor of Emergency Visits for Respirator Complaints: Roles of Deep Learning and Multi-Point Real Time Monitoring, at PAW for Healthcare, on Wednesday, June 22, 2022, from 3:30 pm to 4:15 pm. Click here to register for attendance.

One thought on “Wise Practitioner – Predictive Analytics Interview Series: Dohyeong Kim, PhD, at University of Texas at Dallas

Leave a Reply